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1.INTRODUCTION

The purpose of this paper is to establish existence of C2[0,1]-solutions to the scalar Neumann
boundary value problem (BVP)

Fltz. o', ") =0, t€[0,1]
{ (0)=a, 2/(1)=b, a#b, (V)

where the function f(¢,z,p,q) and its first derivatives are continuous only on suitable subsets of
the set [0, 1] x R®.

The solvability of the homogeneous Neumann problem for the equation (p(t):c’)’ +f(t,z,2' ") =
y(t) has been studied in [5,9,11]. Results, concerning the existence of solutions to the homogeneous
and nonhomogeneous Neumann problem for the equation z” = f(¢,z,2',2") — y(¢t) can be found
in [5,10] and [7] respectively. BVPs for the same equation with various linear boundary conditions
have been studied in [1,2,7,10]. The results of [12] guarantee the solvability of BVPs for the equation
2" = f(t,z,2',2") with fully linear boundary conditions. BVPs for the equation f(t,z,2’,z") =0
with fully nonlinear boundary conditions have been studied in [6]. For results, which guarantee the
solvability of the Dirichlet BVP for the same equation, in the scalar and in the vector cases, see [3]
and [8] respectively.

Concerning the kind of the nonlinearity of the function f(¢,z,p,q), we note that it is assumed
semilinear in [1], linear with respect to z, p and ¢ in [2,11] and sublinear in [5], while in [11] f is a
Caratheodory function. Finally, in [10] and [12] f is a linear function with respect to g, while with
respect to p it is a quadratic function or satisfies Nagumo type growth conditions respectively.

As in [4,6], we use sign conditions to establish a priori bounds for z, z’ and z”, where z(t) €
C?[0,1] is a solution to a suitable family of BVPs containing the problem (N). Using these a priori
bounds and applying the topological transversality theorem from [4], we prove our main existence
result.
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2.BASIC HYPOTHESES
Our results rely on the following three hypotheses.
H1. There are constants K; >0 and K, > 0 such that
fx(t,z,p,q) > K, for (t,z,p,9) €[0,1] X R x J, x R,
Lltizpg) < =K, for [t,z,p,q) € [0,1] X.Jp % J, % R,

2

where J, = [min{O, &?,Eé*i—w},max{(),%—b, -2(—:_76)}} and J, = [min{a, b}, max{a,b}].

H2. There are constants K > 0, M > 0 and a sufficiently small ¢ > 0 such that

f(t,l',p,Q’) +Kq2 0 for (t:IJPJQ) € [O: 1] x [_'MO _E7M0+E] X R X (—OO,—M),

and
flt,z,p,q) + Kqg <0 for (t,z,p,q) € [0,1] X [-My— &, My +¢] x R x (M, 0),
where
e Q la+b] a
My = —(|la — — 2.1
0 ma‘X{SQ - 1 (Ia’ beI + |ae b|)1 min{K, K‘qux} + max{ 2 72!& . bl}}ﬂ ( )

g = max’)\f(t,:c,p,b —a—(1- )\)a:) —(1- A)K(b —a—(1- )\):c)| for (A t,z,p) € [0,1] x

[0,1] x J, x J,, and the constants K, and K, as well as the sets J, and J, are as in HI.
H3. f(t,z,p,q) and f,(¢,z,p,q) are continuous and f,(¢,z,p,q) <0

for (t,z,p,q) € [0,1] X [-Mo — &, Mp +¢] X [-M; — &, My + €] x [-Ms — &, M> + €], where

M, =la|+ Mo+ M, My = My+ M, and My and M are as in H2.

3.AUXILIARY LEMMAS

In order to obtain our main existence result, we consider the following family of BVPs

{ K(m” —-(1- A)x) = )\(K(m” -(1- )\).’L‘) + f(t, z,z’, (2" — (1 - )\):c))), (3.1),
o) =u, [l)=05,

where A € [0,1], while K > 0 is as in H2, when H2 holds, and prove the following two auxiliary

lemmas.

LEMMA 3.1. Let H1 be hold and z(t) € C?[0,1] be a solution to (3.1)x, A € [0,1], where K >0

is an arbitrary constant. Then
|lz(t)] < Mo, t € [0,1],

where M is defined by (2.1).
Proof. For A = 0, the problem (3.1)q is of the form

g = =y w{0) =g, g (l)=075
The unique solution to this BVP satisfies the bound

f2t)] <

(la — be| + |ae —b]), t <€ [0,1].
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Let now A € (0, 1]. Then the function y(t) = z(t)—s(t), t € [0,1], where s(t) = 52t +at, t € [0, 1],
is a solution to the homogeneous boundary value problem

K (y'+b—a—(1-X)(y+s)) = /\(K(y”+b—a—(1—A)(y+s))+f (t,y+s,y’+s’,y”+b—a—(1—f\)(y+s))):

y(0)=y(1) =0

From this equation we obtain

(1-NKy" = (l—A)QKy—(1—)\)K(b—a—(1—A)s)+)\f(t,y+s,y’+s',y”—i—b—a—(1—)\)(y+s)),

(1-XN)Ky" = (1-—/\)2Ky—(l—A)K(b-—a—(1-—)\)s)—}»)\f(t,y—f-s,y’-i—s’,y"—i—b—a——(1—A)(y+s))—

—)\f(t,s,y’—}-s’,y”-{-b—a— (l—A)(y—l—s)) —l—)\f(t,s,y’—i—s’,y”—l—b—a—(1—)\)(y+s)),

(1=-NKy" = (1=-2)*Ky—(1-NK(b—a—(1—N\)s)+\f, (t,.s+91y, y'-i-s’,y”—i—b—a-(1—)\)(y+s))y+

+)\f(t,s,y’+s’,y"+b—a— (1—/\)(y+s)) —/\f(t,s,y’—i-s',y”—l—b—a— (1—)\)3)—{—

+)\f(tﬁsvyl+3’3y”+b_a’_ (1_‘)‘)3):

(1-NKY" = (1-A?Ky—(1-NK(B-a—(1-N)s)+Afa (b, 4619,y +5',y" +b—a— (1) (y+s) )+

_)‘fq(tasay, =+ Sr:y" +b—a= (1 - }‘)S - 92(1 - A)y)(l - ’)‘)y—{_
—i—/\f(t,s,y’+s',y”+b—a—(1—A)s)—)\f(t,s,y’—i—s',b-—a—(1—}\)3)4—)\)"(1:,s,y’-{—s’,b—a-(l—)\)s),

(1=NKy" = (1=2)’Ky—(1-NK(b—a—(1=N)s)+ o (t, 5401y, ¥+, " +b—a— (1-X)(y+3) g+

=M1 - )\)fq(t, s, +8,y" +b—a— (1= X)s—0(1— A)y)y+

A fo(tisy +5 b—a— (1= N)s+0")y" + \f(t.s,0/ +5,b—a—(1— Ms),
((1 - MK — )\fq(t,s,y’ +sb—a—(1—-A)s+ 93y”))y” =

((1 - A)zK-I-)\fm(t,s+91y,y’+s’,y” +b—a—-(1-A)(y+ 3))— (3.2)

-A(1 - )\)fq(t,s,y’+ siy"+b—a—(1—A)s—6(1— A)y))y—i—
+Af(ts, g+, b—a—(1-N)s) — (1= NK(b—a—(1-))s),

where 0< 6, <1,i=1,2,3.
Next, suppose that |y(¢)| achieves its maximum at £y € (0,1). Then the function z = y?(t) has
also a maximum at fy. Consequently, we see that

0 > 2"(to) = 2y(to)y" (o). (3.3)



96

Using the fact that y/'(tp) = 0, from (3.2) we obtain

(1=K = Ayt s0 46— a = (1 = W +0) ) -

((1 = N((1 = XK = Afy(to, 50, 5,3 +b— @ — (1 — N)so — 02(1 = N)zo) ) +

(34)
Ae (to, 80+ 6190, 0, Yo + 0 —a — (1 = A)(yo + 30)))3}0—!—
+/\f(t0,80,36, b—a-— (]. — }\)So) - (1 — )\)K(b —a— (]. — /\)80),
where s = s(to), 5o = '(to), o = y(to), Y5 = y"(to)-
On the other hand, in view of H1, we have
min{ K, —Tq,}—z} > min{K, K,, K, },
where B
Fo = fa(tos 50, 56,45 +b—a— (1= \)so— 82(1— Ngo),
Fo= fo(to, 50+ 0190, 80,96 +b— a— (1= A)(yo + 50))-
Suppose now that |y(to)| > E’E{‘K‘%{m Then, from (3.4) and (3.5) it follows that
(1= XK = Afy(to, 50, 56,5 — a— (1 = N)so + 6598 ) ) > min{ K, K, K }y(to)+ (3.6)
+Af (to, 50,80, b—a — (1= N)so) — (1= NK(b—a— (1 - X)so) ‘
if y(to) > m and
{ ((1 — K - )\fq(tn, 80,50,6—a — (1 —A)so + 9396’))?9’6’ < min{ K, K¢, Kz }y(to)+ (3.7)

+Af (to, 50,50, —a — (1= A)so) — (1= NK(b—a— (1 = X)so)

if y(to) < —ﬁm Multiplying (3.6) and (3.7) by y(to), we obtain

(1= MK — Afy(to, 50, 55,6 —a— (1= X)sg + 6335 ) ) ¥6vo > yo(min{K, Ky, Ko }yo — Q) > 0,

(1-NK - Mo(to, 50,50, —a — (1= N)so + 6335 ) ) wgvo > yo(min{ K, K, Ko }yo + Q) >o.
respectively. Finally, since f, (to, 80,50, 0—a— (1 —N)so+ Bgyg) < 0, we conclude that

ygyo > O:

which contradicts (3.3). Thus, we infer that if |y(t)| achieves its maximum in (0, 1), then

£ < @ ,
ly(t)| < n(K, Ko K, for t€[0,1] and A€ (0,1]

Let |y(1)| be the maximum of |y(t)| and suppose that [y(1)| > m Following the above
reasoning and the fact that 3'(1) = 0, we obtain

y(1)y"(1) > 0.
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If y(1) >0, then y”(1) >0 and so ¥'(t) must be a strictly increasing function for ¢ € U, where
Uy C [0,1] is a sufficiently small neighbourhood of t=1. So, we see that

y(t)<y(1)=0 for teU\{1l},

ie. y(t) is a strictly decreasing function for ¢ € U;. Therefore, y(1) = |y(1)| can not be the
maximum of |y(t)| on [0,1], which is a contradiction. Assume next that y(1) < 0. Then a similar
to the above arguments lead again to a contradiction. Thus, we see that

VOIS R KT

The inequality 0
<
ly(O)] < min{ K, Ky, K,}

can be obtained in the same manner. Consequently, the solutions of (3.1),, A € (0,1], satisfy the
bound

a®  |a+?
)<
[=(8)] = min{K, K,, K,} Na—b 2
and the proof of the lemma is complete.O

LEMMA 3.2. Let H1 and H2 be hold and let z(¢) € C?[0,1] be a solution to (3.1)x, A € [0, 1], where
K is as in H2. Then:

(a)

}, teo,1],

lz"(t) = (L= A)z(@)| < M, |a"()] < Mz, te€[0,1],

where My = My + M;

(b)
|2/ (¢)] < My, t € [0,1],

where M; = |a| + My + M.
Proof. (a) Suppose that there exists a (tp, Ao) € [0,1] x [0,1] or a (1, A1) € [0,1] x [0, 1] such that

z"(to) — (1 — Xo)z(to) < —M or z"(t1) — (1 — \)z(ty) > M.

By Lemma 3.1, we have
|z(t)| < My for t € [0,1]. (3.8)

In particular, (3.8) holds for ¢y or #;. Thus, in view of H2, we have

0> K (a"(to) — (1 — Xo)z(to)) = Ao (K(m”(tg) — (1= Xo)a(to))+

+f(t0:$(t0): xl(tO)ﬂ‘rH(tO) - (1 - }‘O)E(tO))) = 0
or
0< K(a"(t:) — (1= M)z(tr)) =M (K(m”(tl) — (1= )z(t))+

+f(t1,2(t2), 2 (1), 2" () — (1 - }\1)55(?51))) <0,
respectively, which is a contradiction. The obtained contradiction shows that

-M <z"(t) = (1—ANz(t) <M for t€[0,1] and A € [0,1],
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and therefore
—(Mo+ M) <2"(t) < Mg+ M for tel0,1],
which proves (a).
(b) Observe that, by the mean value theorem, for each t € (0,1] there is a £ € (0,¢) such that
Z'(t) — 2'(0) = 2" (&)t.
Since, in view of (a), we have |z"(§)| < My + M, from the last formula we find that
|2’ (@)] < [2'(0)] + |2"(€)] < lal + Mo+ M, t € [0, 1],
which proves (b) and completes the proof of the lemma.O
4.THE MAIN RESULT

Our main result is the following existence theorem, the proof of which is based on the lemmas of
the previous section and the topological transversality theorem from [4].

THEOREM 4.1. Let H1, H2 and H3 be hold. Then the problem (N) has at least one solution in
C?0,1].
Proof. ]For any (A t,z,p,q) €10,1]x[0,1] x [-Mo—¢, My+e] x [-M; —&, My +¢] x [-My—¢e, Ma+€]
consider the function h(A,t,z,p,q) = )\(Kq -+ f(t,a:,p,q)) — Kq, where M;,i = 0,1,2 are the
constants for which, in view of Lemmas 3.1 and 3.2, each C?[0,1]-solution z(¢) to (3.1)x, A €
[0, 1], satisfies the bounds

|z(t)] < Mo, |2'(t)| < My, |z"(¢) — (1= Nz(t)| < M, and |2"(t)] < M,, for t€[0,1], (3.9)
respectively. Since My > M, in view of H2, we obtain
h(A\t,z,p,—Mz—¢e) >0 and h(\t,z,p,My+e) <0

for (A t,z,p) €[0,1] x[0,1] x [-My — &, My + €] x [-M; — €, M; + €|. Besides, by H3, we see that
h(X,t,z,p,q) and he(A,t,z,p,q) are continuous functions and hy(A,t,z,p,q) <0 for (A t,z,p,q) €
[0,1] x[0,1] x [-Mo—e, My +¢] x [—=M; —¢&, My +€] X [~ My —e, My +¢]. Therefore, there is a unique
function G(A,t,z,p), which is continuous on the set [0, 1]x[0, 1]x [—My—e, Mo+e]|x [— My —¢&, My +¢]
and such that

q= G(A:tsmap): (A,t,f&',p) = [03 1] X [07 1] X [_MU — &, MO +€] X [_Ml — &, Ml + E])
is equivalent to the equation
h’()\: t; z,p, q) = O: (Aa t': z,p, Q) = [Oa 1] X [07 1] X [_MO_'E: M0+5] X [_Ml —€, MI+E] X [_MZ_EJ M2+E]'

So, since [z”(t) — (1 — Nz(t)] < M < My+¢ for ¢t € [0,1] and A € [0,1], the family (3.1), is
equivalent to the following families of BVPs
z" — (1 =Nz =G(At,z2), tel01],
{ # (0)=w, 2/{1) = b, (310
and (2 - Nz = G\ 2,2, te[o,1]
2" —(2—-ANz = oo —x, € |0,1],
{ Z(0)=a, Z'(1) =}, (L
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A € [0,1]. Note that from h(0,%,z,p,0) = 0 it follows that
G(0,t,z,p) =0 for (¢t,z,p) €[0,1] x [-Mp — &, My +¢] x [-M; — &, My + €. (3.12)
Now, for C%;[0,1] = {z(t) € C?[0,1] : 2(0) = a, 2'(1) = b} define the set
U={zeC30,1]: |a| < Mo +¢, || < My + &, |a"| < My + ¢}
and then for A € [0,1] define the maps
Gr: C'0,1] = C[0,1] by (Gxz) () = G(\t,2(8),7/(£)) — =(2), t € [0,1],

j:C2[0,1 - C0,1] by jx=z and L,:C%[0,1] = C[0,1] by Lyz=2z"—(2- Nz.

Since Ly, A € [0,1], is a continuous, linear, one-to-one map of C%[0,1] onto C[0,1], the map
L3, X € [0,1], exists and is continuous. In addition, G, A € [0,1], is a continuous and j is a
completely continuous embedding. Since j(U) is a compact subset of C[0,1], and G, A € [0,1],
and Ly', A € [0,1], are continuous on j(TU) and G,(j(U)) respectively, the homotopy

H:U x[0,1] — C*[0,1] defined by H(z,\) = Hy(z) = L G,j(z)
is compact. Besides, the equation
L7'Gyj(z) =2 forz €U yields Lyz = Gyjz,

coincides with the BVP (3.11),. Thus, the fixed points of Hy(z) are solutions to (3.11),. But, by
(3.9), the solutions to (3.11), are elements of U. Consequently, Hy(z),A € [0,1], is a fixed point
free on OU, i.e. H)(z) is an admissible map for all X € [0,1]. Finally, using (3.12), we see that the
map Hj is a constant map, i.e. Hy(z) = [, where [ is the unique solution to the BVP

2" —2z=—z, 2(0)=ga, #'(1)=0

From the fact that | € U it follows that Hj is an essential map (see, [4]). By the topological
transversality theorem (see, [4]), H; = L7'G:j is also essential. So, the problem (3.11); has a
C?[0, 1]-solution. That is, (3.10); has a C?[0, 1]-solution. To complete the proof, remark that the
problem (3.10) is equivalent to (3.1);, which coincides with the problem (N).O

We conclude with the following example, which illustrates our main result.
ExAMPLE 4.1. Consider the boundary value problem

1-(1.5-t)z" —tz"° —cosa’ +x =0,

Z'(0)=0, z'(1)=10""
Clearly, H1 holds for K, =1, K, =0.5, J; = [0,5.107°] and J, = [0,107%]. Next, observe that

510° <107 - (1—-A)z <107* for z€J,
and choose K = 0.5. Then, from
~1,5107* = 107 < —(1,5 - )(10* — (1 = A)z) — £(107* — (1 - N)a)’ < —2,5.107°
for (A,t,z) €[0,1] x [0,1] x J; and

0<1-—cosp<5.107° for pe J,
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it follows that
~16.107° < 1—(1,5-)(107 = (1= N)z) — (1074 - (1 - )\):c)5 —cosp+z < 25107 +5.107°
for (A,t,z,p) € [0,1] % [0,1] X J; X J,. Therefore Q = max{16.1075, 0,5.10~*} = 16.107°. Note that

16.107°

— LB L =8 10
min{L, 1] ©

(1107%| + [107%)),

e
Mo = max{ 21
and, as it is easy to see, H2 and H3 hold for M =5 and & = 3.107°. Thus, we can apply Theorem
4.1 to conclude that the considered problem has a solution in C?[0, 1].
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